Cannabis and Cannabinoids

Pharmacology, Toxicology, and Therapeutic Potential

Franjo Grotenhermen
Ethan Russo
Editors
CONTENTS

About the Editors xv
Contributors xvii
Foreword xxi
Leslie Iversen
Preface xxv
Definitions and Explanations xxvii

PART I: BOTANY, TAXONOMY, CHEMISTRY, AND HISTORY

Chapter 1. Botany of Natural Cannabis Medicines 3
Robert C. Clarke
David Paul Watson
- Introduction 3
- Natural Life Cycle 3
- Agricultural Field Production 5
- Vegetative Crop Production 6
- Resin Gland Development 7
- *Cannabis* Origins 8
- *Cannabis* Taxonomy 10
- Medical *Cannabis* Today 11
- Medical *Cannabis* Tomorrow 11
- Conclusion 12

Chapter 2. Taxonomy of Cannabinoids 15
David W. Pate
- Phytocannabinoids 15
- Synthetic Analogues 16
- Anandamide Congeners 19
- Receptor Antagonists 22
Chapter 3. Chemical Constituents of Cannabis
Mahmoud A. ElSohly

Chemical Constituents 29
Conclusion 35

Chapter 4. History of Cannabis in Western Medicine
Manfred Fankhauser

Cannabis Before the Birth of Christ 37
Cannabis in the Classical Era 38
Hashish in the Arabic World 39
Hemp in Central Europe 39
Cannabis in European Medicine of the Eighteenth Century 40
Cannabis in Nineteenth-Century Western Medicine 42
The Positive Trend Holds True 46
1880–1900: The Climax 46
Cannabis As a Medicine in the Twentieth Century 48
An Era Comes to an End 48
Conclusion 49

PART II: PHARMACOLOGY AND PHARMACOKINETICS

Chapter 5. Effects of Cannabis and the Cannabinoids
Franjo Grotenhermen

Effects on Psyche and Behavior 56
Central Nervous System and Neurochemistry 58
Circulatory System 60
Other Organ Systems and Effects 60
Tolerance 62
Drug Interactions 62
Cannabinoid Interactions 62
Actions of Other Cannabinoids 63

Chapter 6. Pharmacokinetics
Rudolf Brenneisen

General 67
Absorption and Bioavailability 67
Chapter 10. Possible Mechanisms in Autoimmune Diseases

Robert Melamede

PART III: INDICATIONS FOR CANNABIS AND THC

Chapter 11. Review of Therapeutic Effects

Franjo Grotenhermen

Hierarchy of Therapeutic Effects 124
Indications 125
Surveys 132

Chapter 12. Medical Use of Cannabis: Experience in California

Dale Gieringer

Effects of Proposition 215 143
Usage Surveys 144

Chapter 13. Anorexia and Cachexia

Martin Schnelle
Florian Strasser

Anorexia and Cachexia in Cancer Patients 153
Mechanisms of Cancer Cachexia 154
Anorexia and Cachexia in AIDS Patients: Wasting Syndrome 154
Cannabis, ∆9-THC, and Cancer Cachexia/AIDS Wasting 158
Conclusion 161

Chapter 14. Antiemetic Effects of Cannabinoids

Terry Plasse

Antiemetics in Clinical Use 166
Rationale for the Use of Cannabinoids As Antiemetics 166
Clinical Data 167
Current Role of Cannabinoids As Antiemetics 178
Chapter 15. Pain Therapy

 Anita Holdcroft

 Pain Disorders and Their Treatments 181
 Theoretical and Experimental Data 182
 Clinical Trial Data and Case Histories 183
 Summary 184

Chapter 16. Migraine

 Ethan Russo

 Migraine and Its Symptoms 187
 Standard Treatment of Migraine 187
 Clinical History of Cannabis in Migraine Treatment 188
 Theoretical and Experimental Data with THC Pertinent to Migraine 189
 Value and Place of Cannabis in Migraine Treatment 190

Chapter 17. Spastic Disorders

 Richard E. Musty
 Paul Consroe

 Introduction 195
 Spasticity and Spastic Disorders 195
 Marijuana and Cannabinoids in Spastic Disorders 196
 ∆9-THC and Nabilone 197
 Preclinical Effects of Cannabinoids 197

Chapter 18. Movement Disorders

 Kirsten R. Müller-Vahl
 Hans Kolbe
 Udo Schneider
 Hinderk M. Emrich

 Gilles de la Tourette Syndrome 206
 Huntington’s Disease and Other Choreic Disorders 207
 Dystonia 208
 Parkinson’s Disease and Parkinsonian Syndromes 209
 Tremor 210
 Conclusions 211
Chapter 19. Glaucoma and Cannabinoids 215

David W. Pate

Cannabinoids As Ocular Hypotensives 216
Mechanisms of Action 217

Chapter 20. Dependency and Cannabis 225

Tod H. Mikuriya

Pre-Prohibition 225
Cannabis and Mood Disorders 226
Cannabis Substitution for More Harmful Nonmedical Drugs 226
Cannabis Use in Treatment of Psychological and Emotional Trauma 227
Drug Policy, Dependencies, and Cannabis 228

PART IV: RISKS AND SIDE EFFECTS

Chapter 21. Review of Unwanted Actions of Cannabis and THC 233

Franjo Grotenhermen

Overall Toxicity 234
Acute Effects 234
Chronic Effects 235
Legal Consequences 241
Extrapolation of Animal Data to Humans 241
Comparison of Cannabis and Other Drugs 243

Chapter 22. Acute Effects of Cannabis and the Cannabinoids 249

F. Markus Leweke

Acute Effects on the Central Nervous System 249
Effects of Cannabinoids on Peripheral Systems 252

Chapter 23. Cannabis and Dependence 257

Wendy Swift
Wayne Hall

Tolerance and Withdrawal 257
Cannabis Dependence 259
Tolerance, Dependence, and Therapeutic Cannabinoid Use 262
Chapter 24. Pregnancy
 Peter A. Fried
 Impact on the Course of Pregnancy 270
 Impact upon Growth and Neonatal and Infant Behavior 271
 Impact Beyond Infancy 272
 Impact upon Executive Function 273
 Conclusion 275

Chapter 25. Immune System
 Guy A. Cabral
 Immune System and Cannabinoid Receptors 279
 Animal Studies 281
 In Vitro Studies 282
 Human Data with Cannabis/THC 283
 Relevance for the Therapeutic Situation in Therapeutic Doses 284

Chapter 26. Hormonal System and Reproduction
 Laura L. Murphy
 Reproductive Endocrine System 289
 Stress Hormone Axis 292
 Other Hormones 293

Chapter 27. Long-Term Effects of Cannabis on Psyche and Cognition
 Nadia Solowij
 Brin F. S. Grenyer
 Effects on the Central Nervous System 299
 Evidence from Animal Research 299
 Evidence from Human Research 301
 Relevance for Therapeutic Use of Cannabis 306

Chapter 28. Cannabis and Alcohol in Motor Vehicle Accidents
 Gregory B. Chesher
 Marie Longo
 How Cannabis Pharmacokinetics Presents More Problems 316
 Results of Culpability Studies 318
 Conclusion 322
Chapter 29. Respiratory Risks from Marijuana Smoking

Donald P. Tashkin

Introduction 325
Chronic Bronchitis and Emphysema 325
Respiratory Cancer 328
Respiratory Tract Infection 330
Other Potential Respiratory Complications of Marijuana Smoking 331
Monitoring for Respiratory and Infectious Complications of Medicinal Marijuana 332

Chapter 30. Contaminants and Adulterants in Herbal Cannabis

John M. McPartland

Introduction 337
Natural Contaminants 337
Adulterants 340

Chapter 31. Practical Hints

Franjo Grotenhermen

Dosing 345
Restrictions on Use and Helpful Hints 346
Treatment of an Acute Overdose 347
Interactions 347
Cannabis or THC 349
Smoking or Eating 350
Storage 351
Cultivation 351

PART V: OTHER CANNABINOIDS

Chapter 32. Overview of Cannabinoids Under Investigation

Franjo Grotenhermen
PART VI: OTHER CONSTITUENTS OF CANNABIS

Chapter 37. Noncannabinoid Components 401
 John M. McPartland
 Vito Mediavilla

 Introduction 401
 Terpenoids 401
 Flavonoids 404
 Conclusions 406

Chapter 38. Hemp Seed and Hemp Oil 411
 Gero Leson
 Petra Pless

 Introduction 411
 Composition of Hemp Oil 413
 Nutritional and Therapeutic Benefits of Hemp Oil 418
 Body Care 422

Resources 427

Index 429
Preface

I wish to propose for the reader’s favourable consideration a doctrine which may, I fear, appear wildly paradoxical and subversive. The doctrine in question is this: that it is undesirable to believe a proposition when there is no ground whatever for supposing it true.

Bertrand Russell
From “Introduction: On the Value of Scepticism”
Sceptical Essays, 1928

Cannabis is still sending “signals of misunderstanding.”1-3 The result is an exaggeration of beneficial or deleterious effects as well as occasional intermixture of medical science with other moral categories.

This book deals with health aspects of the cannabis plant and the cannabinoids while mainly factoring out societal aspects. Some authors refer to social topics that require discussion even within the bounds of a narrow handling of medicinal aspects.

Scientists with different views on the therapeutic benefits of cannabis and with different assessments of potential harms get a hearing, so that the book reflects and considers the frictions and controversies surrounding many themes in this area.

The different opinions and judgments, often only reading between the lines, possibly result in a deeper insight into the controversial aspects of this topic than a more homogenous book might allow. At the same time, it was the intention of the editors to offer a clearly structured overview of the subject, as well as an insight into many facets of modern cannabinoid research. Leading experts in their fields have contributed to this volume. Most are members of the International Cannabinoid Research Society, which includes about 200 scientists. Some of them are also members of the International Association for Cannabis as Medicine, which deals particularly with the medical use of cannabis and the cannabinoids.

We would like to cordially thank all authors for their pleasant cooperation in contributing their texts to the project. We were particularly glad to have their many proposals for additional topics and suggested modifications. These completed and significantly improved the manuscript from concept to final realization. For their assistance in translation work and in
finishing the manuscript we want to thank Paul Spitzer, Onno Wegner, and Sascha Kinzler. Dr. Russo would like to thank his family and clinical and research partners.

Franjo Grotenhermen
Ethan Russo

REFERENCES

Chapter 1

Botany of Natural *Cannabis* Medicines

Robert C. Clarke
David Paul Watson

INTRODUCTION

Cannabis is among the very oldest of economic plants, providing fiber, edible seed, and drug resin. Human selection for varying uses and natural selection pressures imposed by diverse climates have resulted in a wide variety of growth forms and chemical compositions. Innovative classical breeding techniques have been used to improve drug cannabis, resulting in many cannabinoid-rich cultivars suitable for medical use. The production of cannabinoids is unique to *Cannabis*, and cultivars with specific chemical profiles are being developed for diverse potential pharmaceutical uses.

NATURAL LIFE CYCLE

Cannabis is an annual plant, propagated from seed, and grows vigorously in open sunny environments with light, well-drained soil and ample nutrients and water, and reaches up to five meters (16 feet) in height in a four- to six-month growing season. Feral *Cannabis* populations are frequently found in association with human habitation. Agricultural lands, roadsides, exposed riverbanks, meadows, and disturbed lands are ideal habitats for wild and feral *Cannabis*, as they provide adequate sunlight.

Seeds usually germinate in three to seven days. During the first two to three months of growth juvenile plants respond to increasing day length with more vigorous vegetative growth characterized by an increasing number of leaflets on each leaf. Later in the season (after the summer solstice), shorter days (actually longer nights) induce flowering and complete the life cycle (see Figure 1.1). Cannabis begins to flower when exposed to short day
FIGURE 1.1. Close-Up Photo of a Cannabis Inflorescence, with Each Seed Concealed Within a Perigonal Bract Covered with Glandular Trichomes
lengths of 12 to 14 hours or less (long nights of 10 to 12 hours or more) de-
pending on its latitude of origin. However, a single evening of interrupted
darkness can disrupt flowering and delay maturation. If an individual plant
is not crowded by its neighbors, as is the case for the crops intended for seed
or drug production, flower-bearing limbs will grow from small buds located
at the base of the leaf petioles originating from nodes along the main stalk.
The flowering period is characterized by leaves bearing decreasing numbers
of leaflets.1

Cannabis is normally a dioecious plant, with male and female flowers
developing on separate plants. The sexes of *Cannabis* are anatomically in-
distinguishable before they begin flowering. However, Mandolino and
Ranalli7 report success using RAPD analysis to identify male-specific DNA
markers. The development of male and female plants varies greatly. The
male flowers hang in loose clusters along a relatively leafless upright
branch, in contrast to crowded clusters of individual female flowers at the
base of each leaf along the branch. Male *Cannabis* flowers require air cur-
rents to carry pollen grains to the female flowers, which results in fertiliza-
tion and consequent seed formation. The male plants finish shedding pollen
and die before the seeds in the female plants ripen four to eight weeks after
being fertilized. Pollen has been frozen and successfully used for seed pro-
duction up to three years later.

The single seed in each female flower ripens in about three to eight
weeks and will either be harvested by humans, eaten by birds or rodents, or
drop to the ground. A large female plant can produce over one kilogram of
seed. This completes the natural four to six month life cycle. If the seeds are
not consumed by birds or rodents, they may germinate the following spring.
Cannabis seeds are a balanced source of essential fatty acids (EFAs), and
easily digestible protein and are usable as human food or animal feed (see
Chapter 38). EFAs have been shown to have many important physiological
roles and hemp seed oil is a valuable nutraceutical.3

AGRICULTURAL FIELD PRODUCTION

For hemp crops grown for fiber or seed, both male and female plants are
usually left in the field until harvest. The male plants pollinate the females
and then die before the seeds ripen. In the early 1970s, a handful of North
American marijuana cultivators began to grow *sinsemilla* (Spanish for
“without seed”) marijuana. The sinsemilla effect is achieved by eliminating
staminate plants from the fields, leaving only the unfertilized pistillate
plants to mature for later harvest. In lieu of setting seed in the earliest flow-
ers, the pistillate plants continue to produce additional flowers, which are
covered by resin glands, thus increasing the percentage of psychoactive and
medically valuable ∆9-tetrahydrocannabinol (THC) or other cannabinoids.
This technique was originally developed in India, but historians are unsure of its history prior to 1800. Since 1975, sinsemilla has been the primary style of North American and European marijuana production.

Throughout the 1980s, the vast majority of domestically produced North American drug cannabis was grown outdoors, but in the 1990s the popularity of growing in greenhouses and indoors under artificial lights rapidly expanded. Crops grown from seed make large plants of both genders that take up a lot of space, and exhibit a range of characteristics. A Cannabis breeder relies on this variation as potential to improve varieties. However, a drug cannabis producer wants a profitable and uniform crop, and uses female clones that improve grow room yields, but preclude the possibility of seed production and varietal improvement.

VEGETATIVE CROP PRODUCTION

Much of the Cannabis presently used for medical purposes is grown indoors under artificial lights. Metal halide and sodium vapor light systems are most often set up in attics, bedrooms, or basements. Most modern indoor growers produce vegetatively propagated crops. Only female drug Cannabis plants are economically valuable, and garden space is limited. It is both difficult and expensive to purchase reliable drug Cannabis seed, sales of which are prohibited in many nations. In addition, the legal systems of many nations penalize growers of large quantities of cannabis with harsher penalties. Under artificial growing conditions, crops are reproduced vegetatively by rooting cuttings of only female plants, transplanting and inducing flowering almost immediately. Cuttings taken from one plant are all identical members of a single clone and they will all respond in the same way to environmental inputs. Given that environmental influences are constant, the clone will yield a uniform crop of nearly identical seedless females each time it is grown.

Female “mother” plants are maintained in a constantly vegetative state under 18 hour or longer day lengths. Serial cuttings can be removed, rooted, grown under long day length and used to replace older mother plants, indefinitely. If the cutting material remains free of viruses or other pathogens there is no loss of vigor after multiple rounds of vegetative propagation. Whenever they are required, rooted small cuttings (10 to 30 cm tall) are moved into a flowering room with a day length of 10 to 13 hours, to mature 7 to 14 weeks later.

Cloned plants can mature fully, form flowers from top to bottom and look like a rooted branch from a large plant grown from seed when they are less than one meter tall. The length of time between the induction of flowering under short days and final maturity of the female floral clusters depends largely on the variety being grown and the day length. Some cultivars ma-
ture much more quickly than others. Cannabis plants mature faster when they are given shorter day lengths of 10 hours, but most cultivars have an optimum day length requirement, for maximum production, of around 12 or 13 hours. Under ideal conditions, yields of dried floral clusters can reach 1,200 grams per square meter per year or more, as a result of multiple cropping three or five times per year.

Male plants can also be kept in a vegetative state and induced to flower when pollen is required. However, they are often more difficult to revert from flowering to the vegetative state than females. In vitro techniques would allow long-term storage of wide varieties of living germplasm. Several research groups have reported success6,7 with reproducing undifferentiated callus tissue and meristems.

RESIN GLAND DEVELOPMENT

When resin gland development commences, the medically important cannabinoids and the associated terpenoids begin to appear (see Figure 1.2). Terpenoids are the primary aromatic principles found in the essential oil of Cannabis,5,10 although cannabinoids are odorless. Most interesting medically, are the cannabinoid-rich terpenoid secretions of the head cells of glandular hairs distributed across the surface of the female inflorescence. (Male plants are usually of no consequence for drug production, as they have few glandular trichomes.) Solitary resin glands most often form at the tips of slender trichome stalks which form as extensions of the plant surface. The cluster of one or two dozen head cells atop each stalk secrete aromatic terpenoid-containing resin with a very high percentage of cannabinoids (>80 percent) which collect under a thin waxy membrane surrounding the secretory head cells.2 The secreted resin component is, in large part, segregated from the secretory cells. This isolates the resin from the atmosphere as well as membrane-bound enzyme systems within the secretory cells, possibly protecting the terpenoids and cannabinoids from oxidative degradation and enzymatic change. At the base of each cluster of resin head cells lies an abscission layer allowing the gland and its secreted resin to be easily removed. Cannabis resin (hashish or charas) is simply formed from resin glands that have been rubbed or shaken from the plant and compressed into a dense mass.2

Resin glands containing cannabinoids and terpenoids may have an adaptive significance for the Cannabis plant as defense against environmental challenges, including insect and fungal attack.9 However, Cannabis crops are still subject to infestation by a wide variety of pests, particularly under greenhouse conditions.8 Certainly, the intoxicating effects of this Cannabis resin have increased cannabis predation by humans, as well as encouraged its domestication, thus dramatically widening its distribution.
Cannabis likely originated in Central Asia or near the Altai or the Tian Shan mountains and was first cultivated in China and soon after in India. Different cultures have traditionally used cannabis for a variety of purposes (see Figures 1.3 and 1.4). European and eastern oriental societies most often used cannabis for its strong fibers and nutritious seeds. Races of fiber and seed Cannabis are nearly always relatively low in THC, with an approximately twofold cannabidiol (CBD) content averaging about twice as high. THC is the primary psychoactive compound produced by cannabis. Nonpsychoactive CBD is the other most common naturally occurring cannabinoid. African, Middle Eastern, South Asian, and Southeast Asian cultures used cannabis widely for its psychoactive properties and to a lesser extent for fiber and food.

The vast majority of the varieties from these regions are high in psychoactive THC (often 5 to 10 percent) with a widely varying CBD content (usually nil, but often up to 5 percent). The South Asian section of the Cannabis gene pool was spread by humans far and wide from Africa to Sumatra by early traders and eventually to the equatorial New World. Cannabis was adopted in many of these locations and improved as a psychoactive drug plant. All modern drug varieties used as medical cannabis are derived from these traditional drug varieties.
Modern taxonomists have variously characterized Cannabis. All taxonomists recognize the species Cannabis sativa. Small and Cronquist subdivide C. sativa into two subspecies each with two varieties. Schultes et al. divide Cannabis into three species; C. sativa, C. indica, and C. ruderalis. Several other researchers do not preserve C. ruderalis, but recognize both C. sativa and C. indica. The present authors consider C. sativa to circumscribe all wild, hemp, and drug Cannabis races with the possible exception of the races used for hashish production in Afghanistan and Pakistan. These morphologically and chemically distinct races may deserve the separate specific name of Cannabis afghanica following the variety name for C. indica determined by Vavilov. Validation of this theory awaits further chemotaxonomic and genetic research.

In all of these systems, C. sativa represents the largest and most diverse taxon. C. afghanica is commonly referred to by marijuana breeders and
growers, as well as medical cannabis users, as “indica.” Chemovars of this variety have their own distinctive acrid organic aromas and are often rich in CBD as well as THC. The great variety of chemical, physiological, and morphological traits encountered in *Cannabis* has proven very attractive to plant breeders for years.

MEDICAL CANNABIS TODAY

Drug *Cannabis* available to the medical user can be assigned to one of two categories. Marijuana (domestically produced and imported cannabis flowers) is nearly always grown from high-THC varieties (up to 20 to 25 percent dry weight in trimmed female flowers) containing very little CBD. Hashish or charas (compressed cannabis resin) is made from varieties that are predominantly THC (up to 10 percent), but they often contain up to 5 percent CBD. Clean high-THC profiles result from marijuana growers making seed selections from individual favorable plants with high THC levels. Hashish is produced by bulk processing large numbers of plants, and, therefore, growers are unable to make seed selections from individual particularly potent plants so the CBD level tends to remain at more natural limits. Hashish cultivars are bred for resin quantity rather than potency, so the farmer selects plants and saves seeds by observing which ones produce the most resin, rather than if it contains THC or CBD. Afghan populations contain approximately 25 percent plants that are rich in CBD with little THC, 50 percent that contain both CBD and THC, and 25 percent that contain little CBD and are rich in THC. CBD is suspected of having effects on the primary psychoactive compound THC and in a medical setting it may also have useful modulating effects on THC or valuable effects of its own. However, analytical surveys of 80 *Cannabis* varieties in the Netherlands (D.W. Pate, personal communication, 1999) and 47 samples in California show that nearly every sample contained predominantly THC usually with less than 5 percent of the other combined cannabinoids. Higher levels of THC and other medically effective cannabinoids and terpenoids are healthier for patients using smoked cannabis as they can smoke less to achieve the same dosage and effect.

MEDICAL CANNABIS TOMORROW

Cannabis breeders are continually searching for new sources of exotic germplasm and will develop new varieties that prove particularly effective as medicines. Pure “indica” varieties are still highly prized breeding stock and new “indica” introductions from Central Asia are occasionally re-
received. *C. sativa* varieties from South Africa have recently gained favor with breeders, as they mature early.

HortaPharm BV in the Netherlands has an ongoing breeding project to develop high-yielding *Cannabis* cultivars of known cannabinoid profile. The aim of the project is to create varieties that produce only a single one of the four major cannabinoid compounds (e.g., THC, CBD, CBC, CBG, or their propyl homologues) as well as selected varieties with predictable mixed cannabinoid profiles. Some of these single cannabinoid varieties are being commercially exploited by GW Pharmaceuticals Ltd. in England, which began clinical trials in 1999 with whole cannabis extracts.

CONCLUSION

Largely as a response to political pressure and the limited availability of high quality commercial cannabis, the home growing of this crop, whether for medical or recreational use, is a trend rapidly spreading across North America and Europe. Cannabis smoking and cultivation for personal medical use will eventually be legalized or tolerated in many places, if not by the public openly favoring marijuana legalization, then by increasing awareness of the advantages of this potentially useful medicine.

REFERENCES

CANNABIS AND CANNABINOIDS
Pharmacology, Toxicology, and Therapeutic Potential

in hardbound at $79.95 (ISBN: 0-7890-1507-2)
in softbound at $39.95 (ISBN: 0-7890-1508-0)

<table>
<thead>
<tr>
<th>COST OF BOOKS</th>
<th>BILL ME LATER: ($5 service charge will be added)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTSIDE USA/CANADA/MEXICO: ADD 20%</td>
<td>(Bill-me option is good on US/Canada/Mexico orders only; not good to jobbers, wholesalers, or subscription agencies.)</td>
</tr>
<tr>
<td>POSTAGE & HANDLING</td>
<td>Check here if billing address is different from shipping address and attach purchase order and billing address information.</td>
</tr>
<tr>
<td>(US: $4.00 for first book & $1.50 for each additional book)</td>
<td></td>
</tr>
<tr>
<td>Outside US: $5.00 for first book & $2.00 for each additional book)</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL in Canada: add 7% GST</td>
<td></td>
</tr>
<tr>
<td>STATE TAX (NY, OH & MIN residents, please add appropriate local sales tax)</td>
<td></td>
</tr>
<tr>
<td>FINAL TOTAL (If paying in Canadian funds, convert using the current exchange rate, UNESCO coupons welcome.)</td>
<td></td>
</tr>
</tbody>
</table>

Prices in US dollars and subject to change without notice.

NAME
INSTITUTION
ADDRESS
CITY
STATE/ZIP
COUNTRY
COUNTY (NY residents only)
TEL
FAX
E-MAIL

May we use your e-mail address for confirmations and other types of information? Yes ☐ No ☐
We appreciate receiving your e-mail address and fax number. Haworth would like to e-mail or fax special discount offers to you, as a preferred customer. We will never share, rent, or exchange your e-mail address or fax number. We regard such actions as an invasion of your privacy.

Order From Your Local Bookstore or Directly From
The Haworth Press, Inc.
10 Alice Street, Binghamton, New York 13904-1580 • USA
TELEPHONE: 1-800-HAWORTH (1-800-429-6784) / Outside US/Canada: (607) 722-5857
FAX: 1-800-895-0582 / Outside US/Canada: (607) 722-6362
E-mail: getinfo@haworthpressinc.com

PLEASE PHOTOCOPY THIS FORM FOR YOUR PERSONAL USE.
http://www.HaworthPress.com

BOF02